AI Software Engineer

Heddon on the Wall
3 weeks ago
Create job alert

AI Software Engineer - Newcastle - Up to £60,000 + Bonus
Cutting-Edge AI & Computer Vision Software

KO2's client, an innovative and fast-growing technology company based in the Newcastle area, is looking to recruit an AI Software Engineer to develop next-generation computer vision systems for real-time applications. This is an exciting opportunity to join a highly skilled engineering team working on impactful AI solutions deployed in real-world environments.

Key Responsibilities:

Develop and implement advanced AI and machine learning models for computer vision applications.
Build and optimise real-time video processing pipelines using tools such as GStreamer and FFmpeg.
Train, validate, and refine AI models using best practices, with a focus on precision, recall, and other key performance metrics.
Write efficient, production-level code in Python and C++.
Evaluate and integrate state-of-the-art AI techniques to address complex computer vision challenges.Essential Requirements:

Bachelor's or Master's degree in Computer Science, Data Science, or a related technical discipline.
5+ years of hands-on experience working on computer vision problems and AI system development.
Strong programming skills in Python and C++.
Experience with real-time video pipelines, particularly GStreamer and FFmpeg.
Solid understanding of AI model training concepts (e.g., epochs, hyperparameters, training/validation datasets).
Demonstrated ability to apply the right computer vision techniques and critically evaluate their advantages.Desirable Skills:

Experience deploying AI software in edge computing environments, especially on Nvidia Jetson hardware.
Background in sectors such as automotive computer vision or other real-time, high-reliability fields.
Ability to design appropriate AI models based on a given problem statement and source data.What's on Offer:

A competitive salary up to £60,000 depending on experience.
A chance to work on cutting-edge AI projects with real-world applications.
Flexible and collaborative working environment, with hybrid or on-site options available.If you're ready to take the next step in your AI engineering career and want to work with a forward-thinking team delivering real innovation, apply today to KO2's client in Newcastle

Related Jobs

View all jobs

Principal Software Engineer

AWS Lex/TypeScript Software Engineer

Graduate Solutions Engineer

Software Developer - C

Devops Engineer

Senior Software Developer - 5G Core

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI at the Edge: The Future of Decentralised Intelligence

As the modern world pushes towards instant data processing and real-time analytics, edge computing has emerged as a compelling solution. Instead of funnelling every piece of data to centralised data centres or the cloud, edge computing brings computation closer to the data source—reducing latency, lowering bandwidth costs, and enabling on-the-spot decision-making. From IoT sensors in smart cities to autonomous vehicles and remote industrial sites, the edge has quickly become a linchpin of digital transformation. Simultaneously, Artificial Intelligence (AI) has shown explosive growth, driving breakthroughs in natural language processing, computer vision, and advanced analytics. Cloud-based AI solutions have served organisations well, but in scenarios demanding ultra-low latency or local autonomy, the cloud’s round-trip time becomes a bottleneck. Hence, edge AI—embedding AI models at or near the point of data collection—promises a new wave of hyper-responsive applications and decentralised intelligence. Yet, as we continue pushing the boundaries of data volume, complexity, and speed, even advanced edge solutions sometimes struggle with the exponential computational requirements of AI. This is where quantum computing enters the picture, potentially offering new methods to tackle intractable problems in optimisation, high-dimensional data analysis, and machine learning. While quantum hardware remains in its early stages, the prospect of integrating quantum algorithms into AI workflows at the edge is generating significant excitement. In this article, we’ll explore: The current state and challenges of edge computing. A concise overview of quantum computing and why it matters. The concept of quantum-enhanced AI—especially in distributed or decentralised environments. Potential real-world applications at the intersection of quantum, AI, and edge computing. Key job roles and skill sets emerging in this new frontier. Considerations around security, ethics, and hardware constraints as we move towards quantum solutions at the edge. If you’re a professional in edge computing, an AI enthusiast, or simply curious about what the future of decentralised tech might look like, read on. The fusion of quantum computing and AI at the network edge could redefine how we collect, process, and learn from data in real time.

Edge Computing Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Edge computing has emerged as a revolutionary paradigm for processing data closer to where it’s generated—think IoT devices, sensors in remote locations, autonomous vehicles, and more. By reducing latency and bandwidth usage, edge computing enables real-time insights and responsive applications. In the UK, a growing ecosystem of innovators is capitalising on edge technology, buoyed by increased venture capital, academic prowess, and government-backed programmes that stimulate tech development. In this Q3 2025 Investment Tracker, we’ll explore newly funded UK start-ups blazing a trail in edge computing. We’ll also highlight the wealth of job opportunities these investments create for software engineers, DevOps specialists, data scientists, and other tech professionals looking to carve out a career at the cutting edge—pun fully intended.

Portfolio Projects That Get You Hired for Edge Computing Jobs (With Real GitHub Examples)

Edge computing is transforming how data is collected, processed, and acted upon—often in real time and close to where data is generated. From Internet of Things (IoT) devices to 5G networks and industrial automation, edge computing unlocks new possibilities for low-latency analytics, intelligent decision-making, and resource optimisation. With the proliferation of edge devices and the need for distributed computing architectures, demand for skilled edge computing professionals continues to rise. If you want to stand out in this exciting field, you need more than a great CV: you need a well-curated portfolio demonstrating your hands-on capabilities. This guide will show you how to build that portfolio, including: Why a dedicated edge computing portfolio is crucial. How to choose projects aligned with your target edge roles. Real GitHub examples that illustrate best practices. Actionable project ideas for edge deployments and data processing. Tips on presenting your portfolio so recruiters and hiring managers see your value instantly. When you’re ready, don’t forget to upload your CV on EdgeComputingJobs.co.uk so potential employers can find your newly polished portfolio. Let’s dive in!